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1- Introduction 
-71 

Paris and Erdogm L1J have shown that the concept of a stress 

intensity factor may be fruitfully employed to predict the rate at 

which a fatigne crack propagstes. Since fatigue cracks generally 

originate at geometric discontinuities in structures composed of 

thin plates and shells, it is necessary that the effect of' the 

discontinuity from which these cracks emanate be included in the 

evaluation of the stress intensity factor. Using Bowie's results 

[2,g for an infinite plate vith radial cracks originating from an 

internal hole, Paris [g computed the stress intensity factors for 

this configuration. H i s  calculations indicated for crack lengths less 

than 3 as compared to the radius of the hole that an error of 2 per 

cent or greater, depending upon the number radial cracks, could be 

introduced by considering the plate to contain only a central crack. 

This error increases as the crack length decreases in size since the 

influence of the hole on the crack tip stress field will progressively 

increase as the crack becomes smaller. If the stress intensity factor 

is to be used in studying crack propagation, even relatively SBlall 

errors c811 not be tolerated. 

C r a c k  propagation rates generally vary as the stress intensity 

factor to some positive power which depending upon the material and 

environment is greater than two. Thus small errors in the stress in- 

tensity factor can produce large errors in the computation of crack 

1. Eunbers in brackets refer to references at end of paper. 
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propaption rates. 

In this paper the stress intensity factors vrfll be evaluated far 

an infinite plate subjected t o  cylindrical bending with one and two 

radial cracks emanating from aa internal hole, Figure 1. !Phis is 

accomplished by using a complex variable formulation of the problem 

in conjunction with an approximate mapping function as proposed by 

Bowie pDg - Some of the results presented by Paris 141 are also 

recomputed since it is felt that the techniques employed in the 

present analysis will yield more accuFate results. 

2- Formulation of the Problem 

In  this problem we w i l l  consider the equilibrium of a thin, 

uniform isotropic plate of thickness h which is subjected to the 

bending couples shown i n  Figme 1. By introducing the complex 

variable z* z = x -t iy , with z = 0 representing the center of the 

plate, we find, after applying the techniques ofHuskhelishvili [SI 

t o  the Poisson-Xirchoff theory of plate bending, tbat the deflection 

of the plate, W, can be represented by two analytic functions 

( 9 )  and $b ( z) , where 

W(X,Y) = Re ( 1) 

To simplify the problem a secondary complex plane which is 

defined by 

is introduced. fphe complex mapping function (b( 3 ) maps the region 
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in Figure 1 exterior to the circle and cracks onto the complex 

plane which is exterior to the unit circle \$I > le 
U s i n g  the standard notation (p (2) = (0 B S  = ( 3 )  , 

9' (2) = 'p ( 5 /d ( 3  , etc., where the prim denotes the derivative, 

ve can write expressions for the bending and twisting moments &, 

l$, % in rectangular components. These are 

and 2) is Poisson's ratio. The stresses where D = m3 
12(1 - Y2) 

cx, Gy9 and 8, can be written in terms of EI,, My, aad and are 

where 6 is the coordinate in the v direction measured from the 

central plane of the plate. 

Since the primary purpose of this paper is to evaluate the 

stress intensity factorsr only the complex function 93 (3 ) is needed. 
T h i s  follows from the definition of the stress intensity factor for 

bending given by sib, et ale C6J. 



4 

* where Kb is the stress intensity factor for bending and 's 

corresponds to the crack tip in the mapped plane. Thnstif 4 3 )  

is known, only the function ( 3 )  must be detewined. This function 

is analytic in the 3 plane I SI 7 1 except for the point at infinity 

and it must satisfy the boundary conditions of the problem. The 

Kirchoff bonndarg conditions for this problem on the unloaded 

internal boundary, \SI = 1, am be written as 

3. The &act and Polynomial Approximation of the M a p p i w  Arnction 

Bowie [2,3 gives the apprupriate mapping function €or the problem, 

in differential form, as 

where K is a positive integer representing the number of qual spaced 

cracks. e is a real parameter such that 0 ,< \ € 1  & 1. By varying e 
the crack depth may be changed. As Bowie points ant, for K 7 I, the 

integration of the differential form of the mapping FMction becomes 

quite involved. 

By using a different approach, the mapping function z can be 

arrived at very simply. Considering the following successive 

transformations: 
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m2 = u y  + B 

we arrive at 

B y  le t t ing 

= ljtl -€I and fl = (1  + e  )/(1 - €  ) 

equation (10) becomes 

where € is identical t o  the & i n  equation (8) .  JZquation 11 represents 

the tmnsformstion of the unit c i rc le  intertrpted by K symmetrically 

located cracks i n  the z plane t o  the u n i t  circle i n  the 3 plane. 

For the present analysis i t  is convenient t o  expaad the right 

side of equation (11) i n  a power series which w i l l  have the form 

where the & * a  are  real. 
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It can easily be shovn [5J that using the infinite series 

given by equation (12) leads to an infinite number of equations in 

infinitely maay unknowns for the determination of 'p ( 3)  By 

replacing equation (12) with an '81 term approximation of the mapping 

functfon a set of B in equations in B unknowns is produced from whfch 

$?(s ) can be determined. The finite approximation of equation (12) 

will have the form 

where f n  = & , n = 1,2, . B - 2, and coefficients 
are determined in such a manner that the crack tip singularity is 

retained in quation (13). X is chosen so that a desired accuracy in 

'p( 3)  is obtained. 

BF1 and ~ 

To determine sl and it is required that dzl/dg be of the form 

or 

I t  is  also required fhat 

P 

By using equations (15) a d  (16),two equations in the two unknowns, 

coefficients &1 and € are obtained. For K = 1 the coefficient C 

will be 2 4  -e) and the equations for determining f B-l and w i l l  be 



. .  
. 

N(B + l)€ ar-1"" + 1) (la + 2,e a= 1 + e 4-3 
112 

(8+ 84) ' 

since we can always chose s, = 1. 

4. Determination of lo (;f ) and the Stress Intensity Factors 
In order to satisfy the boundary conditions at infinity the two 

complex functions (0 (3 ) and jb (3 ) mnst be of the form 

It cap also be shown [53 that (0 (3 ) w i l l  be of the f o m  

'phns the present 

they satisfy the 

task is to determine the coefficients ~ z l  so that 

boundary conditions given by equation (7). For 
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a convenient scheme is obtained for detewining the coefficients an. 

As 3 becaanes large the product; cn'( . t  (h '(3) becones 

n 

Therefore for lasge 

By substituting equation (20) into equation (23) we arrive at a set 

of simultaneous equations f o r  the determination of the coefficient- 

Bor the case of a s i n g l e  crack, K = 1, we have 

p = 1,2,0.3€ 
0, P d 2  

- ( l + V )  
- =: 

4 P 
t p = 2  2 

( 24) 

and for the case of two cracks, K = 2, 

a+l = 0 



To determine the stress intensity factor f o r  the problem i t  is  

now convenient t o  take the l i m i t  indicated i n  equation ( 6 )  as 3 
approaches +lo !Phis leads t o  

which c m  be rewritten by using equation (20) and the fac t  that the 

surface stress at infinity i s  given by CM = - 6 MOD . 5 i s  gives 
h2 

In  equation (27) %he only tern that depends upon B, the number of terms 

determining this  snm t o  a desired accuracy a l lows  the compu%ation of 

Kb t o  the same accuracy. 

5. Hzuaerical Results 

Xn order t o  determine the stress intensity factors for the 

configuration shown i n  Figure 1 i n  terms of the r a t i o  L/R, the form 

f o r  the stress intensity factor given by Paris [q was used. This is 
I 

&D= G f i  f(@ (28) 

The quantity f(z) was determined by equating equations (27) and (28) 

In equation (27) , as already mentioned, the only term dependent 
B 

ga 
upon B is  the sum Z (1 - dun. This sum was computed f o r  various 

n=l 
values of B and e . The quantity was related t o  the desired wlue 
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of & by the relations 
B 

where 3\ = I,/& 

It was found f o r  a value of 

K = l  

2 
- 1  K = 2  

L/R equal to o r  greater t h  0.1 

that by retaining approximately 50 terms in the mapping function the 
xsl - 

sum C (1 - 
e l  

and consequently f(@ could be computed toan accuracy 

of 2 0-001. For sglsller values of 

for aa accuracy of 0*001. h e  to the storage limitations of the 

more than 50 tewa would be needed 

digital computer used it was not practical to have B larger than 

500 One vslue of f(3 was computed at an 2 value of 0*05. This 

value was determined to be accurate to 2 0.01 . 
The results of all computations are given in Tables I and 11- 

Table I gives the value o f  f(4 f o r  the single and double crack 

configurations shown in Figure I for 3 = and - F .  - The 

quantity# varies between 0.05 and 10.0. Table I1 gives the values 

of f(3 for uniaxial tension. These were computed by u s i n g  the system 

of equations given inC2]- Due to the poor convergence of the system 

B 

3 

of equations for tension, as  compared to equations (24) and (25), 

only- values between 0.5 and 10-0 were used- These values are L 
B 

accurate to 2 0.001. Table I11 gives the values of f(3 reported by 
m i a  [4- 

The values of f(3 given in Table I are also displayed graphically 
B 

in Bigares 2 through 9. 



6. Discussion: 

As a first point of interest, the values of f(&) given in 

Table I may be used to determine the range of validity f o r  which 

the configuration of Figure 1 may be considered as an infinite sheet 

with a central crack. For the case of K = 2, two crackss and 7 3, 
the assumption of a central crack fs valid with o n l y  a -11 error 

(less than 1%) being introduced due to the assumption. Therefore 

for K = 2 and $ > 3, the stress intensity factor may be calculated 

from Kb = <% where 2% = 2(B + L) fahis is definitely not 

the case for K = 1, a single crack. If one were to assume that 

Kb = Gr%,where 24 = 23 + L, as error of about h$ would be 

introduced even f o r  values of - = 10.0 Thus for K = 2 and E? 7 3 

a central crack m a y  be assumed while f o r  K =  1 this assumption is 

greatly in error. 

L 
B R 

The results given in Table I1 for tension show for K = 2$ K = 1, 

L 
B 

and - 7 3 that the assumption of a central crack introduces a 
negligible error. This obvious difference between tension and bending 

in the range of 

K = 1 will be dfscussed later. 

for which a central crack can be assumed f o r  
R 

Bneckner [?I and Bowie [8] in their studies of edge cracks in 

sheets subjected to tension, Figure 11, f o W  that there was a definite 

effect on the stress intensity factor for small crack lengths due to 

the free edge of the sheet. For small crack lengths, the stress 

intensity factor was found to be equal to gt = 1.13 C L f l  , as 
opposed to Tmf i ,  where is the stress at infinity and L the 

crack length. Paris 143 in computing his values of  f(3 for  tension 

used this free edge effect and considered the crack f o r  very small 

-11- 



values of E! to be an edge crack in a sheet subject to a stress of 

3 a at infinitg, Pigure 12. The quantity 3 is the value of the 
B 

stress concentration factor f o r  a sheet subjected to uniaxial tension 

and weakened by a circular hole. The end result of this thought 

process leads to a value of f(@ = 3.39 for !+ 0. 

One of the pri~larg reasons for computing the values of f(@ 

given in 'Pable I1 was t o  check values of f($ given by Paris for 

small 

L for small values of - 
values. Although there is not any data reported in Table 11 a 

some computations were made for between 
B. I% 

0.1 and 0.5. !?he general trend of these computations teaded to verify 

the assumption made by Paris that f(2) = 3.39 for small crack 

It should also be pointed out that the data given in !?able I1 

accurate thaa that given by Paris for the same range of 

B 

. 
From the theory of plate bending, one finds [9] that the 

lengths. 

is more 

stress 

concentration factor for a plate subjected to cylindrical bending 

and weakened by a circular hole is ( 5  + 33)/(3 + u  ). If the edge 

effect found in tension were also present in bending one would be 

led to let the value of f(3 for small crack lengths be iqua1 to 
- 

f(3 = 1.13 (5 + 3P)/(3 + V ) For the specific case of V = l/3, 

f($) = 2.03. From an inspection of Figures 2.3.6 and 7 it appears 

that f(2 approaches 1.8 rather than 2.03. It is also interesting to 

note f o r  'r> = l/3 that the stress concentration factor is equal to 

1.8. It would now appear, although not conclusively proven, that the 

edge effect found f o r  tension is not present in bending arid f o r  

small A values f(& = ( 5  + 3~)/(3 + L> 1. B 
Erdogan bd gives the exact closed form of the stress intensity 

factor for the shear problem of a hole and a single crack emanating 



from the hole, Figure 13, as 

This may be written in terms of f(@ a8 B 

If one now investigates the range of 3 for which the body can be 

assumed to contain only a central crack it is found for - =  10.0 

that an error of about tpk is introduced. As for the Case of bending, 

this e r r o r  increases as 

shear problem is plotted along with f (3 f o r  the bending problem for 

K = 1 and 'p = 1 . An inspection of this Figure shows in the range of 

R 
L 
B 

decreases. In Figure 10 f($ for the 
B 

3 
0.5 6 k 4  9.0, that these two solutions do not vary by more than 

8. Thus the shear problem and bending problems show close agreement 

and depart strongly from the solution f o r  tension in which K = 1. 

B' B 

The similarity in the solutions for K = 1 between bending and 

shear leads one to suspect that an analogy between shear and bending 

problems for the determination of the stress intensity factors for 

bending might exist. This would be of considerable assistance in 

handling bending problems since may problems which are not tractable 

in bending are easily solved for  shear- %us over the mange of 

applicability one could use the stress intensity factors found f o r  

shear for Kb. However, this concept should be checked very carefully 

before it is applied to other problems. 

In general the method outlined by B o d e  [2,3] and used in solving 
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%his problem has proved to be very suitable for the determination of 

strees intensitp factors for cracks emanatbg from geometric voidsz - using some of the mapping techiqnes given in [liJ one can h a n ~ e  

any type of void geometry. The only 1imiEation in this technique is 

that it requires a large m l e r  of terms in the ~lspping function to 

obtain high accuracy for small values of 4 !&is limitation is not 

insurmcmntable in v i e w  of current digital computing systems. 

-1b 



References: 

1964. 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

0. 

9- 

10. 

11. 

P.C. Paris, F- Erdogan, *A Critical Analysis of Crack Propagation 
Iawsw, The Journal of Basic Engineering, Trans. ASME, Series D, 
1963, p* 528. 

0.L. Bode, "Analysis of an Infinite Plate Containing Radial 
Cracks Originating at the Boundary of an Internal Circular Hole", 
Journal of Hathematics and Physics, Vole 33, 1936, ms 6Q-71. 
0.L. Baaie, 'Effect ef Crack Se@h on the Bxptnre Stress for 
Brittle Failure of Hollow Cylinders Containing Radial Cracks 
at the Bore", Watertown Arsenal Laboratory Report, 1954. 

P.C. I'aris, "A Handbook of Crack 'Pip Stress Intensity Pactors", 
Lehigh University Institute of Research Report, Jnne 1960. 

N-I. Huskhelishvili, "Some Basic Problems of the Mathematical 
Theory of Elasticity", P. Boordhoff Ltd., Groningen Netherlands, 
1953. 

G C -  Sih, P-C- Paris, P. Erdogan, Wrack-Tip, Stress-Intensity 
Factors for Plane Extension and mate Bending Problemsn, Journal 
of Applied MechaPics, Trans. i%XE, Series E, 1963. 

H.F. Bueckner, *Some Stress Singularities and Their Computations 
by Heans of Integral Equations", B ~ u n d a r y  Problems in Differential 
EQnations, Ed. by R.E. Langer, University of Visconsin Press, 1960. 

0.L. Bowie, nRectangalar Tensile Sheet with Symmetric Edge 
Cracks", Journal of Applied Mechanics, Trans. ASME, Series E, 1964. 

G.X. Savin, "Stress Concentrations Around Holes", Pergamon Press, 
1961. 

F. Erdoggn, wElastic-Plastic Anti-Plane Problem in Infinite 
Planes and Strips with Cracks or Cavities-, Progress Report for 
EASA, Lehigh University, April 1966. 

L.V. Kantorovich and V.I. Xrylov, "Approximate Methods of Bfgher 
Analysisu, Third Ed.* P. Boordhoff, Ltdos Groningen, The Xetherlands, 



TABLE I 

f(# ? Two cracks 

= L  
3 

1.78 

1.733 

1.665 

1. 607 

1- 55 6 

1.511 

10 472 

1-438 

1.401 

1- 381 

1. 357 

1.270 

1.215 

1.152 

1- 117 

1.095 

1. om 

1-069 

1.061 

1 054 

1.049 

1.000 

1 ' y= -  
4 

1-?5 

1- 713 

1- 632 

1-597 

10 548 

1-505 

1-468 

1.434 

1.405 

1.379 

1- 355 

1- 269 

1.215 

1- 152 

1- 117 

1-095 

1.080 

1- 069 

1.061 

1- 054 

1- 049 

1- 000 

f@ One Crack 

1- 75 

L?30 

1.660 

1-597 

1.540 

1.489 

1-443 

1.401 

1.364 

1.330 

1.300 

1- 181 

1-101 

1- 001 

0- 941 

0.901 

0 s  873 

0- 852 

0.836 

0- 822 

0.812 

0- 707 

1 9s- 4 

1-73 

1- 710 

1- a6 

1-587 

1.533 

1- 484 

1- WW, 

1.399 

1.363 

1.330 

1.300 

1- 183 

1- 103 

1-003 

0- 943 

0- 905 
00 874 

0.853 

01 837 

00 824 

0- 813 

0- 707 
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TABLE I1 

0- 5 

0.6 

0- 7 

0- 8 

0- 9 

1.0 

1.5 

2.0 

3-0 

4- 0 

5-0 

6.0 

7.0 

8- 0 

9- 0 

10.0 

00 

f'4 $ mo crack8 

1.833 

1.726 

1.642 

1- 574 

1-519 

1-472 

1-323 

1- 245 

l a  164 

1.123 

1.098 

1.082 

1.070 

1-062 

l*W5 

1- w 
1. OOO 

f(h One Crack 

1-731 

1- 605 

1-509 

la 428 

1-362 

1-97 

la 128 

1- 031 

0- 930 

0- 878 

O a  846 

0- 024 

0- 808 

0.796 

0-7W 

0-779 

0.707 
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L 
B 
- 

0.00 

0.10 

0- 20 

0- 30 

0.40 

0.50 

0.60 

0. 80 

LO 

1- 5 

2- 0 

3-0 

5 0  

10.0 

cro 

3-39 

2- 73 

2841 

2.15 

1.96 

1.83 

1.71 

1.58 

1.45 

1.29 

1.21 

1.14 

1.07 

1.03 

1-00 

f(&, One Crack 

- 

3.39 

2-73 

2.30 

2.04 

1.86 

1- 73 

1- 64 

1-47 

1.37 

1.18 

I. 06 

0.94 

08 81 

0.75 

0.707 
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